Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 957-960, 2020.
Article in English | WPRIM | ID: wpr-881042

ABSTRACT

Two new 2-carboxymethyl-3-hexyl-maleic anhydride derivatives, arthrianhydride A (1) and B (2), along with three known compounds 3-5, were isolated from the fermentation broth of a grasshopper-associated fungus Arthrinium sp. NF2410. The structures of new compounds 1 and 2 were determined based on the analysis of the HR-ESI-MS and NMR spectroscopic data. Furthermore, compounds 1 and 2 were evaluated on inhibitory activity against the enzyme SHP2 and both of them showed moderate inhibitory activity against SHP2.


Subject(s)
Animals , Anhydrides/pharmacology , Biological Products/pharmacology , Enzyme Inhibitors/pharmacology , Fungi/chemistry , Grasshoppers/microbiology , Molecular Structure , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Secondary Metabolism
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 387-393, 2019.
Article in English | WPRIM | ID: wpr-776872

ABSTRACT

Replacement of the native promoter of theglobal regulator LaeA-like gene of Daldinia eschscholzii by a strong gpdA promoter led to the generation of two novel cyclopentenone metabolites, named dalestones A and B, whose structures were assigned by a combination of spectroscopic analysis, modified Mosher's reaction, and electronic circular dichroism (ECD). Dalestones A and B inhibit the gene expression of TNF-α and IL-6 in LPS-induced RAW264.7 macrophages.

3.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 475-480, 2019.
Article in English | WPRIM | ID: wpr-776863

ABSTRACT

Three new phenazine-type compounds, named phenazines SA-SC (1-3), together with four new natural products (4-7), were isolated from the fermentation broth of an earwig-associated Streptomyces sp. NA04227. The structures of these compounds were determined by extensive analyses of NMR, high resolution mass spectroscopic data, as well as single-crystal X-ray diffraction measurement. Sequencing and analysis of the genome data allowed us to identify the gene cluster (spz) and propose a biosynthetic pathway for these phenazine-type compounds. Additionally, compounds 1-5 exhibited moderate inhibitory activity against acetylcholinesterase (AChE), and compound 3 showed antimicrobial activities against Micrococcus luteus.


Subject(s)
Animals , Anti-Bacterial Agents , Chemistry , Metabolism , Pharmacology , Bacterial Proteins , Genetics , Metabolism , Crystallography, X-Ray , Insecta , Microbiology , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Micrococcus luteus , Molecular Structure , Multigene Family , Phenazines , Chemistry , Metabolism , Pharmacology , Streptomyces , Chemistry , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL